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Abstract

Published values for the elastic coefficients of wood indicate that this material may be considered orthotropic with
respect to the cylindrical coordinates. This indicates that simplifying the elasticity tensor to allow for the non-unique
strains at » =0, is a simplification that may ignore important structural characteristics of a tree. The constitutive
equations for a cylindrical section of a tree were posed in cylindrical coordinates as a linear function of the radial
coordinate r. The constitutive equations were transformed to a Cartesian basis so that a solution to Saint-Venant’s
Problem, proposed by Iesan (Lecture Notes in Mathematics (1987) 161) could be employed for a cylindrical section of a
tree. From Iesan’s solution it was possible to determine that the auxiliary generalized plane strain stresses can only be a
function of r, and that the total stresses (in cylindrical coordinates) in the plane of the transverse cross-section must be
equal to zero.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lyons et al. (2002) noted that wood in the bole of a tree might be considered a linear elastic material that
is orthotropic with respect to the cylindrical coordinate axes (Fig. 1). If the basis defining the constitutive
equations is transformed by a clockwise rotation to the Cartesian frame, then a solution to the Relaxed
Saint-Venant’s Problem, proposed by Iesan (1987), may be used to determine the stresses and displace-
ments for a cylindrical section of a tree.

Lyons et al. (2002) considered the problem where the elastic coefficients were constant in a cylindrical
section of a tree. This placed certain constraints on the elastic coefficients that resulted in the material acting
similarly to a transversely isotropic material when used in the Relaxed Saint-Venant’s Problem. The Wood
handbook (USDA, 1974) presents values for the elastic coefficients of Pseudotsuga menziesii (Douglas fir)
that indicate the simplified coefficient matrix required to allow for the non-unique strains at » =0, is a
simplification that may ignore important structural characteristics of a tree.
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Fig. 1. Axes of anisotropy in a cylindrical section of a tree.

The objective of this paper is to propose a constitutive equation for a cylindrical section of a tree that
allows consideration of the orthotropic material properties and heterogeneity of wood in trees. Considering
this constitutive equation, and the solution to the Relaxed Saint-Venant’s Problem proposed by Iesan
(1987), we will prove that the stresses from the auxiliary generalized plane strain problems are functions of
the cylindrical coordinate r alone. In addition, we will prove that the two normal stresses (S,,, Sg) and the
shear stress (S,9) in the plane of the transverse cross-section of a tree are equal to zero.

2. Constitutive equations for the bole of a tree

The constitutive equations for a linear elastic material that is orthotropic in cylindrical coordinates are
(prime denotes basis in cylindrical coordinates)

' ’
Sz;/ = CijklEkl

S a 2.1)
Ez;/ = SijkISk/

where §;; is Cauchy’s stress tensor, £, is the infinitesimal strain tensor, Cj;, is the elasticity tensor, and S, is
the compliance tensor.

The Wood handbook (USDA, 1974) presents the engineering constants for Douglas fir when the wood is
assumed to be orthotropic in cylindrical coordinates (Table 1). The coefficients from the upper triangle of
the compliance matrix, calculated from the values in Table 1, are presented in Table 2.

Consider a cylindrical section of a tree that is orthotropic with z, r, and 0 being the axes of anisotropy. If
the z-axis falls within the cylindrical section of the tree then certain relations are required between the elastic
coefficients (Lekhnitskii, 1981). In cylindrical coordinates when » = 0, the unit vectors e, and e, become
indistinguishable. Therefore, it must be possible to interchange the r and 0 directions in (2.1); this requires
certain of the coefficients to be equal at » =0

i _ !/ ! _ ! ! _ !

Sllll - S2222 S1133 - S2233 S2332 - S1313 at — 0 (2 2)

C.=Chy Crow=0Ci Chyy=C "= :
1111 — 2222 1133 — 2233 2332 — 1313
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Table 1
Engineering constants for Douglas fir (USDA, 1974)
E;* (Pa) Ey (Pa) Ey (Pa) Gos® (Pa)  Ggz (Pa) Gor (Pa) Vzr® Vzo VRO Vrz Vor Voz

1.08E+10 540E+08 7.34E+08 691E+08 842E+08 7.56E+07 0.292 0.449 0.390 0.287 0.020 0.022

*Young’s modulus.
®Shear modulus.
“Poisson’s ratio.

Table 2
Compliance coefficients for Douglas fir

Sty (Pa™') i,y (Pa™!) Sy (Pa!) S5y, (Pa™')  Shyyy (Pa') Sy (Pa!)  S)p; (Pa!)  Spy (Pa!) Sy, (Pah)
1.36E — 09 —370E—-10 —-2.70E—11 1.85E—-09 —4.16E—11 9.26E—11 1.45E - 09 1.19E - 09 1.32E - 08

However, the compliance coefficients (Table 2) indicate that Eq. (2.2) is not true for all points in the cross-
section of a tree. It is necessary to introduce constitutive equations that are a function of the cylindrical
coordinate r in order to satisfy (2.2) at » = 0, while allowing for other combinations of coefficients where
r # 0. The following constitutive equation in cylindrical coordinates will be used to model a cylindrical
section of a tree,
E. =55 = Sl r*MiA S’
:'/ l'/]kl kll By + *—jli fl in cylindrical coordinates (2.3)
S = Cikly = [ﬁ +r @]Ekl

where S, Miju, Ciju, and K, are constants.

Lyons et al. (2002) transformed the elasticity and compliance tensors from a cylindrical basis to a
Cartesian basis,

Cijk[ = QmianQerSIC;nnrs
Sijpt = OmiOnjOriQaS, s

where 0;; = 0;;(0) is a clockwise rotation about the x;-axis. The complete list of transformation equations is
included in Appendix A. Given (2.4) the constitutive equations can be written in Cartesian coordinates

(2.4)

S = CyuEn  Eyj = SijSu (2.5)

Before transforming the compliance and elasticity coefficients in (2.3) to Cartesian coordinates, some
simplifications can be made. Eq. (2.2) does not place any restrictions on S5, S5333, Sir12> OF Ci1225 Cissso
C|,,,- Therefore, these coefficients may be independent of r and so the following simplifications can be
made. Let

K = K33 = Kipip =0

(2.6)
M1y = Msz33 = Mipp = 0
Eq. (2.2) does place restrictions on (2.3) when » = 0, therefore, let
G = Cunn Cooss = Cuzs Cozs = Ciais
tr=0 2.7
S =S S = Sz S = Siais } ar 27)
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Substitute (2.6) into (2.3) when » = 0, substitute this into the fourth and fifth equations of (A.1), then the
following can be noted,

Cozy = Sﬁ@*‘ CiCoas = [S7 + C3|Cia13 = Ciaiz

Cias = CjCuais + S5 Cons = [C + S]Ciais = Cuas

Saio3 = S§Siais + CiSum = [S] + CjlS1313 = Si313

Si313 = C3Sua3 + S5 = [CF + S71S1313 = Sias

at r =0 (2.8)

To form the compliance coefficients in Cartesian coordinates substitute (2.3) into (A.1), then take into
account (2.6)—(2.8). The resulting compliance coefficients in Cartesian coordinates may be found in Ap-
pendix B.

3. Elastic equations

With the compliance coefficients transformed into Cartesian coordinates, Eq. (B.1), it is possible to use
Tesan’s (1987) formulation to solve the Relaxed Saint-Venant’s Problem. Lyons et al. (2002) considered a
cylindrical section of a tree as a Relaxed Saint-Venant’s Problem with loads independent of x;. The
statement of the Relaxed Saint-Venant’s Problem will be repeated here for convenience.

From now on in this paper, Greek indices will range from 1 to 2, while Latin indices range from 1 to 3
unless otherwise specified. Summation notation is used for repeated indices, and a comma followed by a
subscript will indicate a partial derivative with respect to the coordinate. Note the following special no-
tation will be used; the Kronecker delta function (J;;), and the two-dimensional alternator symbol (e,g).

Consider a cylindrical section of a tree as a cantilever beam with constant cross-sections (Fig. 2). Let X,
be the open cross-section at x3 = 0, let X, be the open cross-section at x3 = 4, and let X be an arbitrary open
cross-section with normal x;. The lateral surface of the cylinder will be I1, while the boundary of an ar-
bitrary cross-section is I'. The closure of an arbitrary cross-section will be ¥ = YU T.

The resultant loads applied to the cross-section at x; = 0 are the forces F and the moments M, and these
are represented by integral functions of the displacement vector u, where f(u) =F and m(u) = M. The
lateral surface of the cylinder is unloaded, the cross-section at X, is fixed, and body loads will be ignored in

/
T T
/

9 M/és
4 RS

/ X, M,

X,

X
3 F3 M3

Fig. 2. Cylindrical cantilever beam subject to loads independent of x;.
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this analysis. The problem in Fig. 2 is of the class P, as defined by Iesan (1987), where the resultant loads
acting on X are independent of x; and F, = 0.
The displacements resulting from strain, derived in a manner similar to that used by Iesan (1987), are

2
X X
Uy = 0jy | — ay ?3 + ep,auxpxs | + Onlayx, + azlxs + W, (3.1)

where a, are constants that will have to be determined using the boundary conditions, and W = W(x;, x,) is
a vector composed of the functions of integration.

Since the body forces are being ignored and the lateral surface of the cylinder is unloaded, the necessary
conditions for a solution imply that the sum of the stress fields acting on X, must be in equilibrium with the
resultant loads acting on X, therefore,

Jy, Sa(w)da = —£,(w) =0 Jy, Sn(u)da = —f3(w) = —F

3.2

sz eil;ang,;(u)da = —mj (ll) = —M3 sz XaS33 (u)da = ea,;m,;(u) = eapM/; ( )
Substituting (3.1) into the definition of the infinitesimal strain tensor, the resulting strains are

Eii(n) =W, Ey(u) = W, Ex(u) = (ayx, + a3) (3.3)

Exy(u) = 1{agx) + Wap]  E(u) =3[—aw; + Way]  Ep(u) =3[+ Wy

Consider the constitutive Eq. (2.5). Substitute the strain tensor (3.3) into the constitutive equation, then the
stress tensor in Cartesian coordinates becomes

S,“(ll) = C,-j33(a,,x,, + a3) — a4C,-j(x3€aﬁXﬁ + TU(W) (34)

The T;;(W) = Cijs, W; ., are the stresses resulting from the displacement vector W, which is independent of
x3 and so forms a generalized plain strain problem. Iesan (1987) found that the generalized plane strain
problem could be separated into four auxiliary problems T,(,”) (p=1,2,3,4), which are defined by the
following equilibrium Eq. (3.5a) and boundary conditions Eq. (3.5b).

T (W) +(Coasxp)in = 0 T3 (W) +(Cirza) s = 0 T (W), =€ i) = 0 (3.52)

io

Tl(aﬁ)(w)not = - ioc33x/fnoc T(3)(W)/’l(x = —C( 330, ]—;24

io

)(W)”u = €,Cinp3Xph, (3.5b)

Here n is the unit normal to I'. The auxiliary problems combine as follows,

T;(W) = iaﬂ,ﬁ“ (W) (3.6)

p=1

4. Dependence of the auxiliary generalized plane strain stresses on r

The solutions to the Relaxed Saint-Venant’s Problem proposed by Iesan (1987), and Lekhnitskii (1981)
both identify a generalized plane strain component of the problem. In Iesan’s (1987) solution the gener-
alized plane strain problem is further separated into four auxiliary generalized plane strain problems. When
considering the constitutive equations (2.3) with loads independent of x3, it is possible to see that the
auxiliary generalized plane strain stresses T,Ep) p = (1,2,3,4) are functions of r alone.

Theorem 1. IfT,ﬁp) = Ngj) (for all i, j except i = j = 3) at x = x(my, my, m3) € Z, then T,-Ep) = Ng’) on the closed
circular path x3 + x3 = b, where N\ are constants except for Ny, m? +m3 = b2, 0 <ms < h, and b # 0.
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Proof. Consider the original Cartesian coordinate system x (Fig. 2). A second Cartesian coordinate system
can be formed by a counterclockwise rotation about the x3-axis.

X = 0, (4.1)
Here 7y is a positive angle such that 0 < y < 2n, and
cos(y) sin(y) O
Oy = | —sin(y) cos(y) 0
0 0 1

When the problem was originally defined the cross-section X was assumed circular, and the constitutive
equations in the original cylindrical coordinates were independent of 6. Therefore, only the resultant loads,
F and M, are dependent on the original placement of the x;-axis.

Consider Egs. (3.5a) and (3.5b), which defines the auxiliary generalized plane strain stresses T(p for all ,
jexcepti=j=3.Letd; =d;', where d; is a point in the x; frame, and d}' is a point in the x]' frame. Note the
necessary conditions for a solutlon Eq (3.2), must be used to solve for the constants ap in order to de-
termine the generalized plane strain stresses in (3.6). Since the resultant loads occur in (3.2) the a, are
dependent on the x frame. However, the constants a, do not occur in the auxiliary generalized plane strain
problems, Egs. (3.5a) and (3.5b), and so

1(d) = 1Y (d") (4.2)
However, by the coordinate transformation (4.1), when d; = d_}‘, then
d' # Oyd; (4.3)

Therefore, the 7}5-’7 ) (for all i, j except i = j = 3) must be invariant under the coordinate transformation
(4.1) and so they must be constant along the circular path x? + x3 = b*. Thus, Theorem 1 is proven for all
x € Xexceptatb=0. O

Corollary 1. If Tiﬁm = Ném (for all i, j except i =j=3) at X = x(ml,mz,m3) € 2, then Tg = Ng) on the
closed circular path x> + x2 = b2, where N\ is a constant, m> + m2 = b*, 0 <m3 <h, and b # 0.

Proof. Recall the definition of the infinitesimal strains and that the generalized plane strain displacements
are W = W(xx,), then

EY(W)=w% =0 (4.4)

Consider the constitutive equation (2.5) in the auxiliary generalized plane strain problem for i = j = 3, and
note (4.4), then

Eé? (W) = S3311T1(f) + 53322T2(§) + 533337"3(5) + 253312T1(§) =0 (4.5)
Solve (4.5) for T, then

Y = - (S5 TY + Sy Ty + 285312 TL) 46)

S3333

By Theorem 1 the Ta(‘g) in (4.6) are functions of r alone. The coefficients S,33 are functions of r and 0 by
Egs. (2.3) and (2.4). Let 0" be the cylindrical coordinate measured off the xil-axis, and let 0 be the cylin-
drical coordinate measured off the x,-axis. Let 0" = 0, then

Sups3 (0™, 7) = Sup33(0,7) (4.7)
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and

T (0", r) = T (0, ) (4.8)
However, by the transformation (4.1)

M =0+y (4.9)

Therefore, by (4.8) T3(3p) must be invariant under the transformation (4.1) and so must be constant on the
circle x7 +x3 = b* and Corollary 1 is proven. [

5. The auxiliary generalized plane strain stresses as potential functions

Recall the first equation of (3.5a) and let i =1, « =1, 2, and = 1, then
T1(11)(W),1 +T1 (W),o = —(Crizaxi) 1 —(Crazsxi) 2 (5.1)

Note from (B.1) that the C;,3; are functions of r and 6, therefore, the right hand side of (5.1) can be written
as a function of r and 6. Let

Cuzsx; = Dy (r,0)  Ciazsx; = Dia(r, 0) (5.2)

Employing the rule of differentiation of composite functions (Sokolnikoff and Redheffer, 1958) the deriv-
atives of Dy (r,0) w.r.t. x; and Dyy(r,6) w.r.t. x, are

@Dn(r, 9) _ COS(Q) 6D11(r, 9) _ Sll’l(e) 6D11(r, 9)
Ox or r 00 (5.3)
6D12(r, 0) o sm(()) 6D12(}", 6) n COS(@) 6D12(r, 0) '
oxy o or r 00

Eq. (B.1) indicates that Dy, and D, are composite functions of constants, powers of cos(0) and sin(0),
and powers of r. The functions forming D;; and D), can all be represented by convergent power series and
so Dy and Dy, are analytic functions except at » = 0. Thus, by (5.3) Tfll ) and szl) must be analytic functions
except at » = 0 and so can be represented by potential functions of the complex variable

w = x| +ix; (5.4)
Therefore,
Ty = T, (w) and T3, = 73, (w) (5.5)

Similar arguments may be used to demonstrate that the other stresses occurring in (3.5a) and (3.5b) may
be represented as potential functions of the complex variable w. In addition, by (4.6) T3(§’) may also be
represented as a potential function of the complex variable w.

Therefore,

») _ 7
Iy =T, (w) (5-6)

6. Magnitude of the in-plane stresses

Eq. (3.6) indicates the generalized plane strain stresses are linear combinations of the auxiliary gener-
alized plane strain stresses. Therefore, by (5.6) it is possible to represent the generalized plane strain stresses
as potential functions of the complex variable w
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4
7= YT (6.1)
p=1

Recall the equation for the stresses in Cartesian coordinates
Si(w) = Cizs(apx, + a3) — asCipaeapxp + T(W) (3.4)

It can be shown by arguments similar to those preceding (5.4) that the terms in (3.4) not containing 7;;(W)
are analytic and may be represented by potential functions of the complex variable w. Therefore, when (6.1)
is also taken into consideration, all the terms in (3.4) may be represented as potential functions of the
complex variable w, then

S,‘j = S,'j(W) (62)
Recall the objective of this paper was to determine the magnitudes of S,., Sy, and S,9. A counter

clockwise rotation about the x;-axis will transform the stress tensor in Cartesian coordinates (S,4) back to
cylindrical coordinates (S,;).

S;j = QimanSmn (63)
Here
cos(f) sin(0) 0
0;;= | —sin(0) cos(f) 0
0 0 1

and 0 is the cylindrical coordinate measured from the positive x;-axis. Note

Sil SiZ S;3 Srr Sr(? Srz
Sy Sy S| = |Se- Seo Se: (6.4)
Sgl S;Z S§3 Szr Sz() Szz

Consider i =1, 2 and j = 3, then Q;; = 0. Therefore, (6.3) may be written as
S;/s = 00 OpSpy (6.5)

Eq. (6.5) shows that the S;ﬁ are functions of only Sy;, S», and Sy,. Consider the boundary condition on IT in
cylindrical coordinates

s(u)' =S.n; =0 on II (6.6)
Recall on IT that n; = 0, therefore, substituting (6.5) into (6.6) results in
Sypng =0 on IT (6.7)

Recall from (6.4) that S}, = S,,, and S}, = S,4, then from (6.7)

Se=—"1s, onll (6.8)
np

Expanding (6.3) for S, results in

Sy = C(Z)SII +2CpSpS1n + Sgszz (6.9)
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However, recall on IT that the boundary conditions for the stresses in Cartesian coordinates result in

_ —Sppsin(0) _ —Spcos(0)

Su = cos(0) 27 sin(0) on I (6.10)

Substituting (6.10) into (6.9) and simplifying results in
S, = — cos(0) sin(0)S12 + 2 cos(0) sin(0)S;, — cos(0) sin(0)S;, =0 on IT (6.11)
Substitute (6.11) into (6.8), then

Se=-"15,=0 onll (6.12)
ny

Recall from (6.4) that S}, = Sy, then from (6.7) when taking into account (6.12)
n
S()():—— r():() on I1 (613)
ny

Note from (6.2) and (6.3) that the S); maybe represented as potential functions of the complex variable w,
then from (6.11)—(6.13)

S,y (w) = Sgo(w) = S,e(w) =0 on I (6.14)

Recall from (5.3) that the T,E’” may not be analytic at » = 0. However, this is an isolated singular point and
so may be excluded from the domain of analyticity by a circle of infinitely small radius. Thus, by Cauchy’s
integral formula, where from (6.14) S, 4(u) = S,,(w) = 0 on I' and w, # 0, then

Sy (0) = = /rs;ﬂ—(w)dw:o (6.15)

2mi w— W,

However, since w, = 0 is an isolated singularity, w, may be made infinitely close to zero, and then from
(6.15)

Sw) =0 inZ (6.16)

7. Conclusions

By Theorem 1 and Corollary 1 the auxiliary generalized plane strain stresses are only dependent on the
cylindrical coordinate r, and so by (3.6) the generalized plane strain stresses depend on r alone. This fact
will simplify the calculation of the constants a, from the necessary conditions for a solution.

The generalized plane strain stresses were proven to be analytic functions that could be represented as
potential functions of the complex variable w. In addition the S;; stresses were recognized as composite
functions, where the component functions were all analytic functions. The stresses in the plane of X~ were
proven to equal zero on the lateral surface IT when considered in cylindrical coordinates, and this result was
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extended to the region X. Thus, even when the constitutive equations in cylindrical coordinates are de-
pendent on r, the stresses in the plane of a transverse cross-section are still equal to zero.

The results from this paper will be used to derive the three dimensional stress functions for a cylindrical
section of a tree in the sequel, where the constitutive equations are linearly dependent on the cylindrical
coordinate r.

Appendix A. Transformation equations

The transformation equations taking the elasticity coefficients in cylindrical coordinates (Cj,) to Car-
tesian coordinates (C;y;) (Lyons et al., 2002).

Cin = Cgclllll + 2Cc2)Sc2)C1122 + 4C5S£C1212 + Sgc;zzz

Coy = Sgc;m + 2C§S§C1122 + 4C55§C/1212 + Cgcﬁzzz

Caa3 = C;333

Cons = SfZ)C;}l} + C(%C;m

Ciziz = C;C’lm + S(?Cészs

Cin = C{%S(%[Cllm - 2Cl1122 + Cézzz - 2C;212] + [Cg + Sg]cizlz
Cin = C(%S(%C;m + Cgcilzz - 4C5S§C1212 + Sgcézn + C(%S(%C;m
Ciiz = CiClyz3 + 83Chs

Cixs =0

Ciuiz =0

Cip = *COSO[Cf?C;m - Cgcqlzz - 2C§C;212 + 2S(§C;212 + S§C;122 - Sgcézzz] (A'l)
Cops = S5Cl133 + C3Chiyy

Ci =0

Coiz =0

Cony = _CUSU[SgC;m - Sgchzz - 2S§C§212 + 2C£C;212 + C§C;122 - Cgc;zzz]

Cy3 =0

Cuiz =0

G = —GpSp [Cgm - C;322]
Caatz = —CySp[Cl3y3 — Chaps]
Cpup=0
Ci32=0

Note, Cy = cos(0) and Sy = sin(0).
For the transformation equations taking the compliance coefficients in cylindrical coordinates (S;;,) to

Cartesian coordinates (S ), replace ijkz with S,fjk, and C;, with S;, in Eq. (A.1).

Appendix B. Transformed compliance coefficients

The non-zero transformation equations taking the compliance coefficients in Eq. (2.3) (Sj;,) to
Cartesian coordinates (Sj4;), when considering the simplifications from Eqs. (2.6)—(2.8) are as follows.
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Sin = [Cy + S3]Sun + r[CoMu + SyMaa | + 2C58581120 + 4CiSiSia12

Stz = Sun

St133 = Suss + F[C2My133 + S§M]

Siia = —SeCo[Cy[Suut + rMiin] — CiSiiz — 2C; 81212 + 25581212 4+ 8581122 — S5 [Siu11 + Moo ]
Snz = [Cy 4 S§1Sun + r[SyMin + CyMarn] + 2C5858112 + 4C3SpS1a12

Syss = Siizs + r[S;Muizs + CiMass]

Snir = _S0C0[55[51111 +rMun] — 5551122 - 2C551212 + 25551212 + C(Z;Snzz - C(%[Sllll + rMay]]  (B.1)
S3333 = 83333

S3312 = =SpCor[M133 — Mao33]

82323 = Siz13 + FISEMya13 + C(EM]

So313 = =SpCor[Mi313 — Ma3as3]

Sisis = Suais + r{CiMizis + S5 Masns]

Sioi2 = C2S3 28111 + r[Mun + Magg] — 2[Siiz + Sinl] + [C) + S;‘]@

Note, Cy = cos(f) and Sy = sin(0).
Similar equations can be formed for the elastic coefficients by replacing the S;;; by Cijur, Sijis by Cijui, and
M by K, in Eq. (B.1).
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