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Abstract

Published values for the elastic coefficients of wood indicate that this material may be considered orthotropic with

respect to the cylindrical coordinates. This indicates that simplifying the elasticity tensor to allow for the non-unique

strains at r ¼ 0, is a simplification that may ignore important structural characteristics of a tree. The constitutive
equations for a cylindrical section of a tree were posed in cylindrical coordinates as a linear function of the radial

coordinate r. The constitutive equations were transformed to a Cartesian basis so that a solution to Saint-Venant’s

Problem, proposed by Iesan (Lecture Notes in Mathematics (1987) 161) could be employed for a cylindrical section of a

tree. From Iesan’s solution it was possible to determine that the auxiliary generalized plane strain stresses can only be a

function of r, and that the total stresses (in cylindrical coordinates) in the plane of the transverse cross-section must be

equal to zero.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lyons et al. (2002) noted that wood in the bole of a tree might be considered a linear elastic material that
is orthotropic with respect to the cylindrical coordinate axes (Fig. 1). If the basis defining the constitutive
equations is transformed by a clockwise rotation to the Cartesian frame, then a solution to the Relaxed
Saint-Venant’s Problem, proposed by Iesan (1987), may be used to determine the stresses and displace-
ments for a cylindrical section of a tree.
Lyons et al. (2002) considered the problem where the elastic coefficients were constant in a cylindrical

section of a tree. This placed certain constraints on the elastic coefficients that resulted in the material acting
similarly to a transversely isotropic material when used in the Relaxed Saint-Venant’s Problem. The Wood
handbook (USDA, 1974) presents values for the elastic coefficients of Pseudotsuga menziesii (Douglas fir)
that indicate the simplified coefficient matrix required to allow for the non-unique strains at r ¼ 0, is a
simplification that may ignore important structural characteristics of a tree.
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The objective of this paper is to propose a constitutive equation for a cylindrical section of a tree that
allows consideration of the orthotropic material properties and heterogeneity of wood in trees. Considering
this constitutive equation, and the solution to the Relaxed Saint-Venant’s Problem proposed by Iesan
(1987), we will prove that the stresses from the auxiliary generalized plane strain problems are functions of
the cylindrical coordinate r alone. In addition, we will prove that the two normal stresses ðSrr; ShhÞ and the
shear stress ðSrhÞ in the plane of the transverse cross-section of a tree are equal to zero.

2. Constitutive equations for the bole of a tree

The constitutive equations for a linear elastic material that is orthotropic in cylindrical coordinates are
(prime denotes basis in cylindrical coordinates)

S0ij ¼ C0
ijklE

0
kl

E0
ij ¼ S0ijklS

0
kl

ð2:1Þ

where S0ij is Cauchy’s stress tensor, E
0
ij is the infinitesimal strain tensor, C

0
ijkl is the elasticity tensor, and S

0
ijkl is

the compliance tensor.
The Wood handbook (USDA, 1974) presents the engineering constants for Douglas fir when the wood is

assumed to be orthotropic in cylindrical coordinates (Table 1). The coefficients from the upper triangle of
the compliance matrix, calculated from the values in Table 1, are presented in Table 2.
Consider a cylindrical section of a tree that is orthotropic with z, r, and h being the axes of anisotropy. If

the z-axis falls within the cylindrical section of the tree then certain relations are required between the elastic
coefficients (Lekhnitskii, 1981). In cylindrical coordinates when r ¼ 0, the unit vectors er and eh become
indistinguishable. Therefore, it must be possible to interchange the r and h directions in (2.1); this requires
certain of the coefficients to be equal at r ¼ 0

S01111 ¼ S02222 S01133 ¼ S02233 S02332 ¼ S01313
C0
1111 ¼ C0

2222 C0
1133 ¼ C0

2233 C0
2332 ¼ C0

1313

�
at r ¼ 0 ð2:2Þ

Fig. 1. Axes of anisotropy in a cylindrical section of a tree.
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However, the compliance coefficients (Table 2) indicate that Eq. (2.2) is not true for all points in the cross-
section of a tree. It is necessary to introduce constitutive equations that are a function of the cylindrical
coordinate r in order to satisfy (2.2) at r ¼ 0, while allowing for other combinations of coefficients where
r 6¼ 0. The following constitutive equation in cylindrical coordinates will be used to model a cylindrical
section of a tree,

E0
ij ¼ S0ijklS

0
kl ¼ bSijkl þ r�MijklcS0kl

S0ij ¼ C0
ijklE

0
kl ¼ ½Cijkl þ r�Kijkl�E0

kl

)
in cylindrical coordinates ð2:3Þ

where Sijkl, Mijkl, Cijkl, and Kijkl are constants.

Lyons et al. (2002) transformed the elasticity and compliance tensors from a cylindrical basis to a
Cartesian basis,

Cijkl ¼ QmiQnjQrkQslC0
mnrs

Sijkl ¼ QmiQnjQrkQslS0mnrs
ð2:4Þ

where Qij ¼ QijðhÞ is a clockwise rotation about the x3-axis. The complete list of transformation equations is
included in Appendix A. Given (2.4) the constitutive equations can be written in Cartesian coordinates

Sij ¼ CijklEkl Eij ¼ SijklSkl ð2:5Þ

Before transforming the compliance and elasticity coefficients in (2.3) to Cartesian coordinates, some
simplifications can be made. Eq. (2.2) does not place any restrictions on S01122, S

0
3333, S

0
1212, or C

0
1122, C

0
3333,

C0
1212. Therefore, these coefficients may be independent of r and so the following simplifications can be
made. Let

K1122 ¼ K3333 ¼ K1212 ¼ 0
M1122 ¼ M3333 ¼ M1212 ¼ 0

ð2:6Þ

Eq. (2.2) does place restrictions on (2.3) when r ¼ 0, therefore, let

C2222 ¼ C1111 C2233 ¼ C1133 C2323 ¼ C1313
S2222 ¼ S1111 S2233 ¼ S1133 S2323 ¼ S1313

�
at r ¼ 0 ð2:7Þ

Table 1

Engineering constants for Douglas fir (USDA, 1974)

EZ a (Pa) Eh (Pa) ER (Pa) GhZ
b (Pa) GRZ (Pa) GhR (Pa) mZRc mZh mRh mRZ mhR mhZ

1.08E+10 5.40E+08 7.34E+08 6.91E+08 8.42E+08 7.56E+07 0.292 0.449 0.390 0.287 0.020 0.022

aYoung’s modulus.
b Shear modulus.
c Poisson’s ratio.

Table 2

Compliance coefficients for Douglas fir

S01111 (Pa
�1) S 01122 (Pa

�1) S01133 (Pa
�1) S02222 (Pa

�1) S02233 (Pa
�1) S03333 (Pa

�1) S02323 (Pa
�1) S01313 (Pa

�1) S01212 (Pa
�1)

1.36E�09 �3:70E�10 �2:70E�11 1.85E�09 �4:16E�11 9.26E�11 1.45E�09 1.19E�09 1.32E�08
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Substitute (2.6) into (2.3) when r ¼ 0, substitute this into the fourth and fifth equations of (A.1), then the
following can be noted,

C2323 ¼ S2hC1313 þ C2hC2323 ¼ ½S2h þ C2h �C1313 ¼ C1313

C1313 ¼ C2hC1313 þ S2hC2323 ¼ ½C2h þ S2h �C1313 ¼ C1313

S2323 ¼ S2hS1313 þ C2hS2323 ¼ ½S2h þ C2h �S1313 ¼ S1313

S1313 ¼ C2hS1313 þ S2hS2323 ¼ ½C2h þ S2h �S1313 ¼ S1313

9>>>>=
>>>>;

at r ¼ 0 ð2:8Þ

To form the compliance coefficients in Cartesian coordinates substitute (2.3) into (A.1), then take into
account (2.6)–(2.8). The resulting compliance coefficients in Cartesian coordinates may be found in Ap-
pendix B.

3. Elastic equations

With the compliance coefficients transformed into Cartesian coordinates, Eq. (B.1), it is possible to use
Iesan’s (1987) formulation to solve the Relaxed Saint-Venant’s Problem. Lyons et al. (2002) considered a
cylindrical section of a tree as a Relaxed Saint-Venant’s Problem with loads independent of x3. The
statement of the Relaxed Saint-Venant’s Problem will be repeated here for convenience.
From now on in this paper, Greek indices will range from 1 to 2, while Latin indices range from 1 to 3

unless otherwise specified. Summation notation is used for repeated indices, and a comma followed by a
subscript will indicate a partial derivative with respect to the coordinate. Note the following special no-
tation will be used; the Kronecker delta function ðdijÞ, and the two-dimensional alternator symbol ðeabÞ.
Consider a cylindrical section of a tree as a cantilever beam with constant cross-sections (Fig. 2). Let R1

be the open cross-section at x3 ¼ 0, let R2 be the open cross-section at x3 ¼ h, and let R be an arbitrary open
cross-section with normal x3. The lateral surface of the cylinder will be P, while the boundary of an ar-
bitrary cross-section is C. The closure of an arbitrary cross-section will be R ¼ R [ C.
The resultant loads applied to the cross-section at x3 ¼ 0 are the forces F and the momentsM, and these

are represented by integral functions of the displacement vector u, where f ðuÞ ¼ F and mðuÞ ¼ M. The
lateral surface of the cylinder is unloaded, the cross-section at R2 is fixed, and body loads will be ignored in

Fig. 2. Cylindrical cantilever beam subject to loads independent of x3.
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this analysis. The problem in Fig. 2 is of the class P1 as defined by Iesan (1987), where the resultant loads
acting on R are independent of x3 and Fa ¼ 0.
The displacements resulting from strain, derived in a manner similar to that used by Iesan (1987), are

ui ¼ dia

�
� aa

x23
2
þ ebaa4xbx3

�
þ di3½aqxq þ a3�x3 þ Wi ð3:1Þ

where ap are constants that will have to be determined using the boundary conditions, andW ¼ Wðx1; x2Þ is
a vector composed of the functions of integration.
Since the body forces are being ignored and the lateral surface of the cylinder is unloaded, the necessary

conditions for a solution imply that the sum of the stress fields acting on R2 must be in equilibrium with the
resultant loads acting on R1, therefore,R

R2
Sa3ðuÞda ¼ �faðuÞ ¼ 0

R
R2
S33ðuÞda ¼ �f3ðuÞ ¼ �F3R

R2
eabxaS3bðuÞda ¼ �m3ðuÞ ¼ �M3

R
R2
xaS33ðuÞda ¼ eabmbðuÞ ¼ eabMb

ð3:2Þ

Substituting (3.1) into the definition of the infinitesimal strain tensor, the resulting strains are

E11ðuÞ ¼ W1;1 E22ðuÞ ¼ W2;2 E33ðuÞ ¼ ðaqxq þ a3Þ
E23ðuÞ ¼ 1

2
½a4x1 þ W3;2� E13ðuÞ ¼ 1

2
½�a4x2 þ W3;1� E12ðuÞ ¼ 1

2
½W1;2 þ W2;1� ð3:3Þ

Consider the constitutive Eq. (2.5). Substitute the strain tensor (3.3) into the constitutive equation, then the
stress tensor in Cartesian coordinates becomes

SijðuÞ ¼ Cij33ðaqxq þ a3Þ � a4Cija3eabxb þ TijðWÞ ð3:4Þ

The TijðWÞ ¼ CijkaWk;a, are the stresses resulting from the displacement vectorW, which is independent of
x3 and so forms a generalized plain strain problem. Iesan (1987) found that the generalized plane strain
problem could be separated into four auxiliary problems T ðpÞ

ij ðp ¼ 1; 2; 3; 4Þ, which are defined by the
following equilibrium Eq. (3.5a) and boundary conditions Eq. (3.5b).

T ðbÞ
ia ðWÞ;a þðCia33xbÞ;a ¼ 0 T ð3Þ

ia ðWÞ;a þðCia33Þ;a ¼ 0 T ð4Þ
ia ðWÞ;a �eqbðCiaq3xbÞ;a ¼ 0 ð3:5aÞ

T ðbÞ
ia ðWÞna ¼ �Cia33xbna T ð3Þ

ia ðWÞna ¼ �Cia33na T ð4Þ
ia ðWÞna ¼ eqbCiaq3xbna ð3:5bÞ

Here n is the unit normal to C. The auxiliary problems combine as follows,

TijðWÞ ¼
X4
p¼1

apT
ðpÞ
ij ðWÞ ð3:6Þ

4. Dependence of the auxiliary generalized plane strain stresses on r

The solutions to the Relaxed Saint-Venant’s Problem proposed by Iesan (1987), and Lekhnitskii (1981)
both identify a generalized plane strain component of the problem. In Iesan’s (1987) solution the gener-
alized plane strain problem is further separated into four auxiliary generalized plane strain problems. When
considering the constitutive equations (2.3) with loads independent of x3, it is possible to see that the
auxiliary generalized plane strain stresses T ðpÞ

ij p ¼ ð1; 2; 3; 4Þ are functions of r alone.

Theorem 1. If T ðpÞ
ij ¼ N ðpÞ

ij (for all i, j except i ¼ j ¼ 3) at x ¼ xðm1;m2;m3Þ 2 R, then T ðpÞ
ij ¼ N ðpÞ

ij on the closed
circular path x21 þ x22 ¼ b2, where N ðpÞ

ij are constants except for N ðpÞ
33 , m

2
1 þ m22 ¼ b2, 06m36 h, and b 6¼ 0.
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Proof. Consider the original Cartesian coordinate system x (Fig. 2). A second Cartesian coordinate system
can be formed by a counterclockwise rotation about the x3-axis.

xIIi ¼ Qijxj ð4:1Þ
Here c is a positive angle such that 0 < c6 2p, and

Qij ¼
cosðcÞ sinðcÞ 0

� sinðcÞ cosðcÞ 0

0 0 1

2
4

3
5

When the problem was originally defined the cross-section R was assumed circular, and the constitutive
equations in the original cylindrical coordinates were independent of h. Therefore, only the resultant loads,
F and M, are dependent on the original placement of the x1-axis.
Consider Eqs. (3.5a) and (3.5b), which defines the auxiliary generalized plane strain stresses T ðpÞ

ij for all i,
j except i ¼ j ¼ 3. Let dj ¼ dIIj , where dj is a point in the xj frame, and d

II
j is a point in the x

II
j frame. Note the

necessary conditions for a solution, Eq. (3.2), must be used to solve for the constants ap in order to de-
termine the generalized plane strain stresses in (3.6). Since the resultant loads occur in (3.2) the ap are
dependent on the x frame. However, the constants ap do not occur in the auxiliary generalized plane strain
problems, Eqs. (3.5a) and (3.5b), and so

T ðpÞ
ij ðdjÞ ¼ T ðpÞ

ij ðdIIj Þ ð4:2Þ

However, by the coordinate transformation (4.1), when dj ¼ dIIj , then

dIIj 6¼ Qijdj ð4:3Þ

Therefore, the T ðpÞ
ij (for all i, j except i ¼ j ¼ 3) must be invariant under the coordinate transformation

(4.1) and so they must be constant along the circular path x21 þ x22 ¼ b2. Thus, Theorem 1 is proven for all
x 2 R except at b ¼ 0. �

Corollary 1. If T ðpÞ
ij ¼ N ðpÞ

ij (for all i, j except i ¼ j ¼ 3) at x ¼ xðm1;m2;m3Þ 2 R, then T ðpÞ
33 ¼ N ðpÞ

33 on the
closed circular path x21 þ x22 ¼ b2, where N ðpÞ

33 is a constant, m21 þ m22 ¼ b2, 06m36 h, and b 6¼ 0.

Proof. Recall the definition of the infinitesimal strains and that the generalized plane strain displacements
are W ¼ Wðx1x2Þ, then

EðpÞ
33 ðWÞ ¼ W ðpÞ

3;3 ¼ 0 ð4:4Þ

Consider the constitutive equation (2.5) in the auxiliary generalized plane strain problem for i ¼ j ¼ 3, and
note (4.4), then

EðpÞ
33 ðWÞ ¼ S3311T

ðpÞ
11 þ S3322T ðpÞ

22 þ S3333T ðpÞ
33 þ 2S3312T ðpÞ

12 ¼ 0 ð4:5Þ
Solve (4.5) for T ðpÞ

33 , then

T ðpÞ
33 ¼ � 1

S3333
ðS3311T ðpÞ

11 þ S3322T ðpÞ
22 þ 2S3312T ðpÞ

12 Þ ð4:6Þ

By Theorem 1 the T ðpÞ
ab in (4.6) are functions of r alone. The coefficients Sab33 are functions of r and h by

Eqs. (2.3) and (2.4). Let hII be the cylindrical coordinate measured off the xII1 -axis, and let h be the cylin-
drical coordinate measured off the x1-axis. Let hII ¼ h, then

Sab33ðhII; rÞ ¼ Sab33ðh; rÞ ð4:7Þ
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and

T ðpÞ
33 ðh

II; rÞ ¼ T ðpÞ
33 ðh; rÞ ð4:8Þ

However, by the transformation (4.1)

hII ¼ h þ c ð4:9Þ
Therefore, by (4.8) T ðpÞ

33 must be invariant under the transformation (4.1) and so must be constant on the
circle x21 þ x22 ¼ b2 and Corollary 1 is proven. �

5. The auxiliary generalized plane strain stresses as potential functions

Recall the first equation of (3.5a) and let i ¼ 1, a ¼ 1, 2, and b ¼ 1, then

T ð1Þ
11 ðWÞ;1þT ð1Þ

12 ðWÞ;2¼ �ðC1133x1Þ;1�ðC1233x1Þ;2 ð5:1Þ
Note from (B.1) that the Cia33 are functions of r and h, therefore, the right hand side of (5.1) can be written
as a function of r and h. Let

C1133x1 ¼ D11ðr; hÞ C1233x1 ¼ D12ðr; hÞ ð5:2Þ
Employing the rule of differentiation of composite functions (Sokolnikoff and Redheffer, 1958) the deriv-
atives of D11ðr; hÞ w.r.t. x1 and D12ðr; hÞ w.r.t. x2 are

oD11ðr; hÞ
ox1

¼ cosðhÞ oD11ðr; hÞ
or

� sinðhÞ
r

oD11ðr; hÞ
oh

oD12ðr; hÞ
ox2

¼ sinðhÞ oD12ðr; hÞ
or

þ cosðhÞ
r

oD12ðr; hÞ
oh

ð5:3Þ

Eq. (B.1) indicates that D11 and D12 are composite functions of constants, powers of cosðhÞ and sinðhÞ,
and powers of r. The functions forming D11 and D12 can all be represented by convergent power series and
so D11 and D12 are analytic functions except at r ¼ 0. Thus, by (5.3) T ð1Þ

11 and T
ð1Þ
12 must be analytic functions

except at r ¼ 0 and so can be represented by potential functions of the complex variable
w ¼ x1 þ ix2 ð5:4Þ

Therefore,

T ð1Þ
11 ¼ T ð1Þ

11 ðwÞ and T
ð1Þ
12 ¼ T ð1Þ

12 ðwÞ ð5:5Þ
Similar arguments may be used to demonstrate that the other stresses occurring in (3.5a) and (3.5b) may

be represented as potential functions of the complex variable w. In addition, by (4.6) T ðpÞ
33 may also be

represented as a potential function of the complex variable w.
Therefore,

T ðpÞ
ij ¼ T ðpÞ

ij ðwÞ ð5:6Þ

6. Magnitude of the in-plane stresses

Eq. (3.6) indicates the generalized plane strain stresses are linear combinations of the auxiliary gener-
alized plane strain stresses. Therefore, by (5.6) it is possible to represent the generalized plane strain stresses
as potential functions of the complex variable w
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Tij ¼
X4
p¼1

apT
ðpÞ
ij ðwÞ ð6:1Þ

Recall the equation for the stresses in Cartesian coordinates

SijðuÞ ¼ Cij33ðaqxq þ a3Þ � a4Cija3eabxb þ TijðWÞ ð3:4Þ

It can be shown by arguments similar to those preceding (5.4) that the terms in (3.4) not containing TijðWÞ
are analytic and may be represented by potential functions of the complex variable w. Therefore, when (6.1)
is also taken into consideration, all the terms in (3.4) may be represented as potential functions of the
complex variable w, then

Sij ¼ SijðwÞ ð6:2Þ
Recall the objective of this paper was to determine the magnitudes of Srr, Shh, and Srh. A counter

clockwise rotation about the x3-axis will transform the stress tensor in Cartesian coordinates ðSabÞ back to
cylindrical coordinates ðS0abÞ.

S0ij ¼ QimQjnSmn ð6:3Þ

Here

Qij ¼
cosðhÞ sinðhÞ 0
� sinðhÞ cosðhÞ 0
0 0 1

2
4

3
5

and h is the cylindrical coordinate measured from the positive x1-axis. Note

S011 S012 S013
S021 S022 S023
S031 S032 S033

2
64

3
75 ¼

Srr Srh Srz
Shr Shh Shz

Szr Szh Szz

2
4

3
5 ð6:4Þ

Consider i ¼ 1, 2 and j ¼ 3, then Qij ¼ 0. Therefore, (6.3) may be written as

S0ab ¼ QaqQbcSqc ð6:5Þ

Eq. (6.5) shows that the S0ab are functions of only S11, S22 and S12. Consider the boundary condition on P in
cylindrical coordinates

sðuÞ0 ¼ S0ijnj ¼ 0 on P ð6:6Þ

Recall on P that n3 ¼ 0, therefore, substituting (6.5) into (6.6) results in

S0abnb ¼ 0 on P ð6:7Þ

Recall from (6.4) that S011 ¼ Srr, and S012 ¼ Srh, then from (6.7)

Srh ¼ � n1
n2
Srr on P ð6:8Þ

Expanding (6.3) for Srr results in

Srr ¼ C2hS11 þ 2ChShS12 þ S2hS22 ð6:9Þ
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However, recall on P that the boundary conditions for the stresses in Cartesian coordinates result in

S11 ¼
�S12 sinðhÞ
cosðhÞ S22 ¼

�S12 cosðhÞ
sinðhÞ on P ð6:10Þ

Substituting (6.10) into (6.9) and simplifying results in

Srr ¼ � cosðhÞ sinðhÞS12 þ 2 cosðhÞ sinðhÞS12 � cosðhÞ sinðhÞS12 ¼ 0 on P ð6:11Þ

Substitute (6.11) into (6.8), then

Srh ¼ � n1
n2
Srr ¼ 0 on P ð6:12Þ

Recall from (6.4) that S022 ¼ Shh, then from (6.7) when taking into account (6.12)

Shh ¼ � n1
n2
Srh ¼ 0 on P ð6:13Þ

Note from (6.2) and (6.3) that the S0ab maybe represented as potential functions of the complex variable w,
then from (6.11)–(6.13)

SrrðwÞ ¼ ShhðwÞ ¼ SrhðwÞ ¼ 0 on P ð6:14Þ

Recall from (5.3) that the T ðpÞ
ij may not be analytic at r ¼ 0. However, this is an isolated singular point and

so may be excluded from the domain of analyticity by a circle of infinitely small radius. Thus, by Cauchy’s
integral formula, where from (6.14) S0abðuÞ ¼ S0abðwÞ ¼ 0 on C and wo 6¼ 0, then

S0abðwoÞ ¼
1

2pi

Z
C

S0abðwÞ
w� wo

dw ¼ 0 ð6:15Þ

However, since wo ¼ 0 is an isolated singularity, wo may be made infinitely close to zero, and then from
(6.15)

S0abðwÞ ¼ 0 in R ð6:16Þ

7. Conclusions

By Theorem 1 and Corollary 1 the auxiliary generalized plane strain stresses are only dependent on the
cylindrical coordinate r, and so by (3.6) the generalized plane strain stresses depend on r alone. This fact
will simplify the calculation of the constants ap from the necessary conditions for a solution.
The generalized plane strain stresses were proven to be analytic functions that could be represented as

potential functions of the complex variable w. In addition the Sij stresses were recognized as composite
functions, where the component functions were all analytic functions. The stresses in the plane of R were
proven to equal zero on the lateral surface P when considered in cylindrical coordinates, and this result was
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extended to the region R. Thus, even when the constitutive equations in cylindrical coordinates are de-
pendent on r, the stresses in the plane of a transverse cross-section are still equal to zero.
The results from this paper will be used to derive the three dimensional stress functions for a cylindrical

section of a tree in the sequel, where the constitutive equations are linearly dependent on the cylindrical
coordinate r.

Appendix A. Transformation equations

The transformation equations taking the elasticity coefficients in cylindrical coordinates ðC0
ijklÞ to Car-

tesian coordinates ðCijklÞ (Lyons et al., 2002).

C1111 ¼ C4hC
0
1111 þ 2C2hS2hC0

1122 þ 4C2hS2hC0
1212 þ S4hC0

2222

C2222 ¼ S4hC
0
1111 þ 2C2hS2hC0

1122 þ 4C2hS2hC0
1212 þ C4hC0

2222

C3333 ¼ C0
3333

C2323 ¼ S2hC
0
1313 þ C2hC0

2323

C1313 ¼ C2hC
0
1313 þ S2hC0

2323

C1212 ¼ C2hS
2
h ½C0

1111 � 2C0
1122 þ C0

2222 � 2C0
1212� þ ½C4h þ S4h �C0

1212

C1122 ¼ C2hS
2
hC

0
1111 þ C4hC0

1122 � 4C2hS2hC0
1212 þ S4hC0

2211 þ C2hS2hC0
2222

C1133 ¼ C2hC
0
1133 þ S2hC0

2233

C1123 ¼ 0
C1113 ¼ 0
C1112 ¼ �ChSh½C2hC0

1111 � C2hC0
1122 � 2C2hC0

1212 þ 2S2hC0
1212 þ S2hC0

1122 � S2hC0
2222�

C2233 ¼ S2hC
0
1133 þ C2hC0

2233

C2223 ¼ 0
C2213 ¼ 0
C2212 ¼ �ChSh½S2hC0

1111 � S2hC0
1122 � 2S2hC0

1212 þ 2C2hC0
1212 þ C2hC0

1122 � C2hC0
2222�

C3323 ¼ 0
C3313 ¼ 0
C3312 ¼ �ChSh½C0

3311 � C0
3322�

C2313 ¼ �ChSh½C0
1313 � C0

2323�
C2312 ¼ 0
C1312 ¼ 0

ðA:1Þ

Note, Ch ¼ cosðhÞ and Sh ¼ sinðhÞ.
For the transformation equations taking the compliance coefficients in cylindrical coordinates ðS0ijklÞ to

Cartesian coordinates ðSijklÞ, replace C0
ijkl with S

0
ijkl and Cijkl with Sijkl in Eq. (A.1).

Appendix B. Transformed compliance coefficients

The non-zero transformation equations taking the compliance coefficients in Eq. (2.3) ðS0ijklÞ to
Cartesian coordinates ðSijklÞ, when considering the simplifications from Eqs. (2.6)–(2.8) are as follows.
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S1111 ¼ bC4h þ S4hcS1111 þ rbC4hM1111 þ S4hM2222c þ 2C2hS2hS1122 þ 4C2hS2hS1212
S1122 ¼ S1122

S1133 ¼ S1133 þ r½C2hM1133 þ S2hM2233�
S1112 ¼ �ShCh½C2h ½S1111 þ rM1111� � C2hS1122 � 2C2hS1212 þ 2S2hS1212 þ S2hS1122 � S2h ½S1111 þ rM2222��
S2222 ¼ ½C4h þ S4h �S1111 þ r½S4hM1111 þ C4hM2222� þ 2C2hS2hS1122 þ 4C2hS2hS1212
S2233 ¼ S1133 þ r½S2hM1133 þ C2hM2233�
S2212 ¼ �ShCh½S2h ½S1111 þ rM1111� � S2hS1122 � 2C2hS1212 þ 2S2hS1212 þ C2hS1122 � C2h ½S1111 þ rM2222��
S3333 ¼ S3333

S3312 ¼ �ShChr½M1133 �M2233�
S2323 ¼ S1313 þ r½S2hM1313 þ C2hM2323�
S2313 ¼ �ShChr½M1313 �M2323�
S1313 ¼ S1313 þ r½C2hM1313 þ S2hM2323�
S1212 ¼ C2hS

2
h ½2S1111 þ r½M1111 þM2222� � 2½S1122 þ S1212�� þ ½C4h þ S4h �S1212

ðB:1Þ

Note, Ch ¼ cosðhÞ and Sh ¼ sinðhÞ.
Similar equations can be formed for the elastic coefficients by replacing the Sijkl by Cijkl, Sijkl by Cijkl, and

Mijkl by Kijkl, in Eq. (B.1).
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